Communication Engineering (IJECE)
ISSN(P): 2278-9901; ISSN(E): 2278-991X Engineering and Technology

Vol. 4, Issue 2, Mar 2015, 13-22 Connecting Researchers; Nurturing Innovations

© IASET IASET

International Journal of Electronics and A International Acndemy of Science,
“

A NOVEL LOW POWER PIPELINED DATAPATH DESIGN USING

PARALLELISM HAVING CONSTANT THROUGHPUT

ANSHUMAN TEWARI ' & HARSH GUPTA?
'R. V. College of Engineering, RVCE, Bangalore, Kaaka, India
“Department of ECE, Manipal University Jaipur, R&jas, India

ABSTRACT

In this paper, we present a novel algorithm to enBipelined Datapath architecture to be combinel amnother
Datapath module in a Parallel fashion known aslaRipelined datapath. It has the best powerrgpeificiency of up to

0.1125X as compared to 2.5X, at the cost of deerbtiwoughput from 4X to 1X, while maintaining tseeme chip area
KEYWORDS: A Novel Low Power Pipelined Datapath Design

INTRODUCTION

The instructions of data path design starts frostruction address to the instruction memory by ofs¢he
program counter. Register operands are used dféeinstruction is fetched, as specified by thedfief instructions.
After the Register operands have been fetchey, tan be operated to compute for a memory asldi@sd or store),
to compute for an arithmetic result or to compa®ifl branch) instructions. Figure 1 representstimeponents of a basic

computer design [2].

Figure 1: Components of a Computer Design

The result of an arithmetic logical instructioodn ALU is written to a register file. When the oaton is for a
load or store, the ALU result is used as an addmsstore and load a value from memory into thgister. At the final
stage, the output of ALU and memory is written batk the register file after computation. ALU outps also used in
branch instructions to determine the next instarctiddress coming from either the ALU (where thegPam Counter

(PC) and branch offset are added) or from the addérwhich increments the current PC by 4. FigBreepresents a

www.iaset.us anti@iaset.us

14 Anshuman Tewari & Harsh Gupta

simple datapath architecture where the buses (shgvihick lines) are used as interconnecting wiogjin the functional
units that consist of multiple signals [2]. Theoavrlines are used to guide the information dataflorossing lines are

connected by the presence of a dot.

Figure 2: A Simple Datapath Design Architecture
DATAPATH ARCHITECTURE

As shown in Figure 3, the top multiplex replacke wvalue of PC (PC+4 or the branch destination esiy
the AND gate is used to control the multiplexerddstline) that together with the zero output of lAland signal from
control block (representing the branch instructidi)e multiplexer unit (in middle) has the outphiat returns back to the
register file which is used to steer the outputddf) (in case of an arithmetic logical instruction) the output of data
memory block (in case of a load for fetch). Thettwwimost multiplexer is used to determine whether gbcond ALU
input is from the register file or from the offséld of instruction (an immediate operation, loadstore, or a branch

instruction) [2].

Figure 3: Basic Implementation of the MIPS Subsetricluding the Necessary Multiplexors and Control Lires

Control lines (shown by red color) from the cohtbdock are straightforward and determine the opena
performed at ALU, such as whether the data memboplsl be read or write, or should the registerdgper a write

operation.

Figure 4 shows each datapath element explicithgtriction memory unit (extreme left side) to stdhe
instructions from a program counter and supplystioeed instructions at a given address. PC is tesbdld the address of

the current instruction. The next sequential withie Registers, from where the datal and datagacke Following to it,

Impact Factor (JCC): 3.2029 Index Copernicus Value (ICV): 3.0

A Novel Low Power Pipelined Data Path Design UsinBarallelism Having Constant Throughput 15

an adder unit is used to increment the PC to goitihe address of next instruction. This addeg@binational block),
can be built from an ALU and designed simply byimgrthe control lines so that the control block @ specifies an add
operation. Another adder unit (labeled as Add) 9eduto indicate that it acts as a permanent addek land cannot
perform other ALU functions [2]. Last but not theakt; we have the Data memory block for executimgiastruction,
to start fetching the instructions from the membigck. For executing the next upcoming instructjotie program

counter must be incremented by 4 bits so as ta poithe next instruction to be executed.

The R—format instruction reads two registers (rgniRegisterl and Register2) which are later usgaerform an
ALU operation upon its read value, and write theutes on a memory unit. The R-instruction includdd, sub, and, or,
andslt. An instance for such as R-type instructioadd $t1,$t2,$t3, which reads the content of source register $t2%i8
and writes the result to $t1. The processor’'s gdrmirpose register is used to store hierarchatiires in a register file.
This register file is a collection read or writ@structions and contains the register state ofithehine. An ALU is needed

to operate on the values read from Registers block.

R-format instructions have 3 register operandsstfaf all, we read the two data words from a regidile.
An input to the register file specifies the registember to be read and an output correspondingin the register file
carries the value to be read. For writing a datadwtwo inputs are mandatory. First, specify thgiseer number to be

written with and second; supply the data to betamiinto that specific register location.

Register file always outputs the contents of tegisumbers that can be read as register inputstah of four
inputs are needed among which three are for regmtmbers and one for data. Two data output arerdrigom it.
The input registers have five bit input each, mgkilnem 32 bit wide registers, whereas the datatiapd the two data
output buses are each 32 bits wide. The ALU talke$iBinputs and produce a 32 bit outcome. Onebiput for the

signal, if the result is zero from an ALU [2].

Here, we considered the MIR&d word instruction byws$t1, offset_value($t2) and the store word instruction by
swdtl,offset_value($t2). These instructions compute for a memory addresadioljng the base register address to it. If the
instruction isload, the value read from the memory must be writtebo ithe register file and loaded in the specified

register, here that is $t1.

Keeping apart the Main Control Unit design, an ACOntrol block uses the function code and a 2igita as its
control input to get the selected output to ALU tutdentifying the fields of instruction and thentml lines for the
datapath is the real challenge. In order to contiecfield of instruction to the datapath, threpety of instruction formats

are used, namely, R-type, branch, and load/stdre.iffstruction format is as follows:
» Opfield, also known as thepcode, is always contained in bit locations [31:26]emeéd as field Op[5:0].

» The two registers are specified byandrt fields for read positions: [25:21] and [20:16]. Tee&me applies for

branch instruction, R-type and store instructionvas.
* The base register for load and store instructieqdaced in bit positions [25:2114).
» For 16-bit offset load, branch equal and storeirsion is put in positions [15:0].

* The destination register is placed in one out efttho places. For a load or fetch, it is in bitifoss [20:16] (t),
while for an R-type instruction; it is in bit pasihs [15:11] (d).Thus there is a need to add an additional

multiplexor to select which field of the instruatiés used to indicate the register number to baemri2].

16 Anshuman Tewari & Harsh Gupta

Figure 4: Datapath Design with All Necessary Multipexors and Control Signals

Using this know-how, we add the instruction latselsl an extra multiplexor (for the Write registember input
of the register file) to the simple datapath shawfigure 1. Figure 5 shows these additional biquks the ALU control
block, the write signals for state elements, tlarsignal for data memory, and the control sigf@snultiplexors. Since
all the multiplexors have two inputs, each neciessa single control line. Figure 5 also showsstineen single-bit control
lines (from Control unit) plus the 2-bit ALUOp coat signal to the ALU Control block

Figure 5: Simple Datapath Design with the Control Wit and All the Control Signals (Shown in Red)
PIPELINED DATAPATH IMPLEMENTATION USING PARALLELISM

Parallel processing is an important technique riducing power consumption in CMOS circuits. They ke
approach is to trade area for power while maintginthe same throughput. In simple terms, if thepsupoltage is
reduced by half, the power is reduced by one-foartth performance is lowered by half. The loss iriggmance can be
compensated by parallel processing. The pipelinecligl datapath implementation is illustrated byimple 16-bit
addition mechanism where the 16-bit operand ig §pid 8 bits, each pipelined and combined in aalbar fashion for
higher throughput at reduced power supply voltagegire 6 shows an example of a 16-bit adder wébit inputs each
(shown as A16 and B16) and resulting in a 16-bitittah output, which will be used as the basisdplitting these 16-bit
inputs, each input being split into two blocks albi& in a parallel fashion and then pipelined ieeghe resultant 16-bit

output.

Impact Factor (JCC): 3.2029 Index Copernicus Value (ICV): 3.0

A Novel Low Power Pipelined Data Path Design UsinBarallelism Having Constant Throughput 17

Figure 6: Example - Two 16-Bit Registers SuppliesWwo Operands to an Adder. Delay of the
Critical Path of the Adder is 10 nsec. Operating Fequency = 100 MHz

The estimated dynamic power of the circuit:
Pref =Cref * (Vref)? « Fref (1) (2)
e Parallelism

As shown in Figure 7, the adder unit has beenichiteld twice, but the input registers have beenked at half
the frequency ofref. This helps to reduce the supply voltage such ttieatcritical path delay is not more than 20 nsec.
Figure 8 depicts the Multi-core structure for Loamger high frequency applications.

Figure 7: 16-Bit Adder Split into 8-Bit Pipelined Parallel Latch Enabled Structure

e Impact of Parallelism

The following equation depicts the power consumpiin ‘Parallel’ architecture. Table 1 gives themgarison
‘With’ and ‘Without’ Vdd scaling of parallel desigr{1]. The estimated dynamic power is 0.227 tifPess:

18 Anshuman Tewari & Harsh Gupta

Table 1: Area, Power and Throughput — ‘With’ Voltage Scaling
and ‘Without’ Voltage Scaling for ParallelDesigns

Area 2.2X 2.2X
Power 2.2X 0.227X
Throughput 2X 1X

Figure 8: Example - Multi-Core Structure for Low Power

¢ Pipelining

Pipelining is an implementation technique wherdtiple tasks are performed in an overlapped marihean be
implemented when a task can be divided into twanore subtasks, which can be performed independdfitiyre 9, 10
and 11 depicts task division in pipelined structure

A task takes time t

time
The task is divided in k subtasks
| 2 a6 K
. time

Figure 9: An Example of a Pipelined Task Divided Ito Subtasks

Pipeline Implementation

s S: coo] g,

WEUT
R~

Figure 10: Different Subtasks are Performed by Diférent Hardware Blocks Known as Stages. Result Proded
by Each Stage is Temporarily Buffered in Latches aththen Passed Onto the Next Stage

Impact Factor (JCC): 3.2029 Index Copernicus Value (ICV): 3.0

A Novel Low Power Pipelined Data Path Design UsinBarallelism Having Constant Throughput 19

More hardware resources are utilized in pipelisédicture implementation [1]. Task execution in gbiped
architecture is shown in Figure 11.

Ts Ts1 | Ts2| Tsa| Tse
Ta Ta1|Taz| Taa| Taa

T2 T3t |Taz | Taa| T

Tz T21| T22| T23| Tas

Ti T |Tiz| T3 T

M T T ™ 5 W T Ib
time —>

Figure 11: Task Execution in a Pipelined Implementton

Pipeline Performance Parameters
* Clock Period

t = Max { time delay of a stage },* + other delays

» Frequency: Reciprocal of the clock Peric ;,'r =l/z
* Speedup:k stage pipeline, n tasks
¢ . " S kwhenn>>k
L4(n=1)

» Efficiency: Ratio of its actual speedup to the ideal speediip [

n=&, /K

» Throughput: Number of tasks that can be completed per uné tim

R

A
7 —
A
ol 7|z - o451 5
¢ o Ul 015

A q q

815 |- a7 -_,bj

_:, dider
B "

Figure 12: Pipelining for Low Power

20 Anshuman Tewari & Harsh Gupta

In Figure 12 pipelined realization, instead ofdibaddition, 8-bit addition is performed in eathge. The critical
path delay through the 8-bit adder stage is abalitthat of 16-bit adder stage. Therefore, the t8aider operates at a
clock frequency of 100MHz with a reduced power syppltage ofVref/2. Table 2 depicts the same.

* Impact of Pipelining
The estimated dynamic power is 0.28 tirResf:

.
P = C il e L = LUST B =L | F = O28F,

Table 2: Area, Power and Throughput — ‘With’ Voltage Scaling
and ‘Without’ Voltage Scaling for Pipelinal Designs

Without Vdd With Vdd

ey Scaling Scaling

Area 1.15X 1.15X

Power 2.3X 0.28X
Throughput 2X 1X

e Parallel Pipelining

Here, more than one parallel structure is usedeaicti structure is pipelined. Both power supply faequency of
operation are reduced to achieve substantial dwerdliction in power dissipation as shown in FigliBe Table 3 depicts

the Parallel Pipelined architecture strategy

-

Figure 13: Combined Pipelined and Parallelism Archiecture
» Impact of Parallel Pipelined Strategy

The estimated dynamic power is 0.1125 tirAesf:

P m(:_s('_)(u_sr:_)i"_;' 0.1125P,,

Impact Factor (JCC): 3.2029 Index Copernicus Value (ICV): 3.0

A Novel Low Power Pipelined Data Path Design UsinBarallelism Having Constant Throughput 21

Table 3: Area, Power and Throughput — ‘With’ Voltage Scaling and
‘Without’ Voltage Scaling for Parallel Pipelined Designs

Parameter |Without Vdd Scaling | With Vdd Scaling
Area 2.5X 2.5X
Power 2.5X 0.1125X
Throughput 4X 1X

CONCLUSIONS

The parallel datapath architecture has a powengaf 0.227X in comparison to 2.2X at the costreduced
throughput from 2X to 1X. The pipelined datapatbhitecture has a power reduction to 0.28X from 2vd¥ a reduced
output to 1X from 2X. However, the combined dathpathich involves the combination of both pipelingad parallel
architecture, has the best power saving efficieatyp to 0.1125X as compared to 2.5X, at the cdstlexreased

throughput from 4X to 1X, while maintaining the saghip area.
REFERENCES
1. https://lwww.youtube.com/playlist?list=PLTEh-62_zAfHE- pcjgREKiKyPSgjkx]

2. Computer Architecture, Fifth Edition: A QuantitagivApproach (The Morgan Kaufmann Series in Computer
Architecture and Design) Paperback — Septembe2@0]1 by John L. Hennessy (Author), David A. Patiers
(Author), ISBN-13: 978-0123838728, Editior” 5

